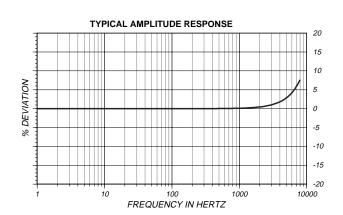
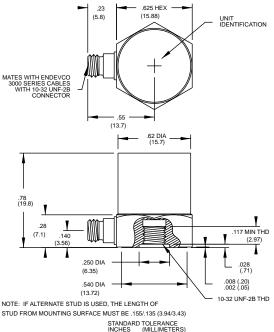
Piezoelectric Accelerometer

Model 2272

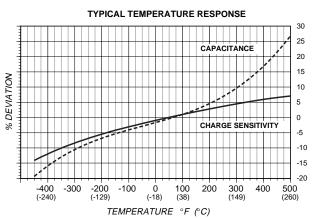

- Long Term Stability
- Hermetically Sealed
- Operational To -452°F (-269°C)
- Requires No External Power
- Vibration Measurement at Extreme Temperature

DESCRIPTION

The ENDEVCO[®] Model 2272 is a piezoelectric accelerometer designed specifically for vibration measurement at temperature extremes. The unit is hermetically sealed for use in harsh environments and features long term stability. Its unique sensing elements offer an unusually flat temperature response over a broad range. The accelerometer is a self-generating device that requires no external power source for operation.


The Model 2272 features ENDEVCO's PIEZITE[®] Type P-10 crystal element, operating in compression mode. This unit exhibits excellent output sensitivity stability over time. Signal ground is connected to the outer case of the unit. When used with an isolated mounting stud, the accelerometer is electrically isolated from ground. The accelerometer features a 10-32 UNF-2A side-connector. A low-noise coaxial cable is supplied for error-free operation.

ENDEVCO Signal Conditioner Models 133, 2775A or OASIS 2000 Computer-Controlled System are recommended for use with this high impedance



Actual size

ENDEVCO MODEL 2272

CCRT) FICO

Piezoelectric Accelerometer

SPECIFICATIONS

The following performance specifications conform to ISA-RP-37.2 (1964) and are typical values, referenced at +75°F (+24°C) and 100 Hz, unless otherwise noted. Calibration data, traceable to National Institute of Standards and Technology (NIST), is supplied.

		Unite	
	RISTICS	Units	
CHARGE SENSITIVITY		01	40
TYPICAL		pC/g	13
		pC/g	10.4
FREQUENCY RESPONS	-		See Typical Amplitude Response
RESONANCE FREQUE		kHz	30
AMPLITUDE RESPONS	E [1]		
±5%		Hz	1 to 5000
±1dB		Hz	.5 to 7000
TEMPERATURE RESPO	DNSE		See Typical Curve
TRANSVERSE SENSITI	VITY	%	≤ 3 (≤ 1 on special order)
AMPLITUDE LINEARITY	· [2]	%	1
Per 1000 g, 0 to 2000 g			
ELECTRICAL CHARAC	TERISTICS		
OUTPUT POLARITY			Acceleration directed into the base of the unit
			produces positive output
RESISTANCE		GΩ	≥ 10
CAPACITANCE		pF	2700
GROUNDING		Ы	Signal ground connected to case
GROUNDING			Signal ground connected to case
ENVIRONMENTAL CHA	DACTEDISTICS		
TEMPERATURE RANGE	= [3]		-452°F to +500°F (-269°C to +260°C)
HUMIDITY			Hermetically sealed
SINUSOIDAL VIBRATIO	N LIMIT	g	1000
SHOCK LIMIT		g	2000
BASE STRAIN SENSITIY	VITY	equiv. g pk/µ strain	0.04
THERMAL TRANSIENT	SENSITIVITY	equiv. g pk/°F (/°C)	0.08 (0.144)
ELECTROMAGNETIC S	ENSITIVITY	equiv. g rms/gauss	0.0002
		1 0 0	
PHYSICAL CHARACTE	RISTICS		
DIMENSIONS			See Outline Drawing
WEIGHT		gm (oz)	27 (0.95)
CASE MATERIAL		giii (02)	Stainless Steel
CONNECTOR			10-32 UNF-2A Thd, mates with Endevco 3000
CONNECTOR			Series cable
MOUNTING TORQUE		llef in (Nen)	
MOUNTING TORQUE		lbf-in (Nm)	18 (2)
CALIBRATION			
SUPPLIED:			
CHARGE SENSITIVITY		pC/g	
CAPACITANCE		pF	
MAXIMUM TRANSVERS		pF %	
		pF	20 Hz to 5000 Hz
MAXIMUM TRANSVERS		pF %	20 Hz to 5000 Hz 5000 Hz thru resonance
MAXIMUM TRANSVERS		pF % %	
MAXIMUM TRANSVERS		pF % %	5000 Hz thru resonance
MAXIMUM TRANSVERS CHARGE FREQUENCY ACCESSORIES	RESPONSE	pF % %	5000 Hz thru resonance
MAXIMUM TRANSVERS CHARGE FREQUENCY ACCESSORIES Model 3090C-120 (10 ft)	RESPONSE CABLE ASSEMBLY	pF % % dB	5000 Hz thru resonance NOTES 1. Low-end response of the transducer is a function of its
MAXIMUM TRANSVERS CHARGE FREQUENCY ACCESSORIES Model 3090C-120 (10 ft) Model 2981-12	RESPONSE CABLE ASSEMBLY MOUNTING STUD, 10-32	pF % % dB	5000 Hz thru resonance NOTES 1. Low-end response of the transducer is a function of its associated electronics.
MAXIMUM TRANSVERS CHARGE FREQUENCY ACCESSORIES Model 3090C-120 (10 ft)	RESPONSE CABLE ASSEMBLY	pF % % dB	5000 Hz thru resonance NOTES 1. Low-end response of the transducer is a function of its associated electronics. 2. Short duration shock pulses, such as those generated by meta
MAXIMUM TRANSVERS CHARGE FREQUENCY ACCESSORIES Model 3090C-120 (10 ft) Model 2981-12 P/N EHM64	RESPONSE CABLE ASSEMBLY MOUNTING STUD, 10-32 Hex Key Wrench	pF % % dB	 5000 Hz thru resonance NOTES 1. Low-end response of the transducer is a function of its associated electronics. 2. Short duration shock pulses, such as those generated by meta to-metal impacts, may excite transducer resonance and cause
MAXIMUM TRANSVERS CHARGE FREQUENCY ACCESSORIES Model 3090C-120 (10 ft) Model 2981-12 P/N EHM64 OPTIONAL ACCESSOR	RESPONSE CABLE ASSEMBLY MOUNTING STUD, 10-32 Hex Key Wrench	pF % % dB	 5000 Hz thru resonance NOTES 1. Low-end response of the transducer is a function of its associated electronics. 2. Short duration shock pulses, such as those generated by meta to-metal impacts, may excite transducer resonance and cause linearity errors. Send for TP290 for more details.
MAXIMUM TRANSVERS CHARGE FREQUENCY ACCESSORIES Model 3090C-120 (10 ft) Model 2981-12 P/N EHM64 OPTIONAL ACCESSOR Model 2981-4	RESPONSE CABLE ASSEMBLY MOUNTING STUD, 10-32 Hex Key Wrench IES MOUNTING STUD, 10-32	pF % % dB	 5000 Hz thru resonance NOTES 1. Low-end response of the transducer is a function of its associated electronics. 2. Short duration shock pulses, such as those generated by meta to-metal impacts, may excite transducer resonance and cause linearity errors. Send for TP290 for more details. 3. Exposure to rapid temperature changes greater thatn 100°F
MAXIMUM TRANSVERS CHARGE FREQUENCY ACCESSORIES Model 3090C-120 (10 ft) Model 2981-12 P/N EHM64 OPTIONAL ACCESSOR	RESPONSE CABLE ASSEMBLY MOUNTING STUD, 10-32 Hex Key Wrench IES MOUNTING STUD, 10-32 IN-LINE CHARGE CONVI	pF % % dB to 10-32 to M5 ERTOR FOR	 5000 Hz thru resonance NOTES 1. Low-end response of the transducer is a function of its associated electronics. 2. Short duration shock pulses, such as those generated by meta to-metal impacts, may excite transducer resonance and cause linearity errors. Send for TP290 for more details. 3. Exposure to rapid temperature changes greater thatn 100°F (38°C) per minute may cause the device to produce spurious
MAXIMUM TRANSVERS CHARGE FREQUENCY ACCESSORIES Model 3090C-120 (10 ft) Model 2981-12 P/N EHM64 OPTIONAL ACCESSOR Model 2981-4	RESPONSE CABLE ASSEMBLY MOUNTING STUD, 10-32 Hex Key Wrench IES MOUNTING STUD, 10-32 IN-LINE CHARGE CONVI USE WITH CONSTANT C	pF % % dB to 10-32 to M5 ERTOR FOR	 5000 Hz thru resonance NOTES 1. Low-end response of the transducer is a function of its associated electronics. 2. Short duration shock pulses, such as those generated by meta to-metal impacts, may excite transducer resonance and cause linearity errors. Send for TP290 for more details. 3. Exposure to rapid temperature changes greater thatn 100°F (38°C) per minute may cause the device to produce spurious high frequency discharges for several minutes.
MAXIMUM TRANSVERS CHARGE FREQUENCY ACCESSORIES Model 3090C-120 (10 ft) Model 2981-12 P/N EHM64 OPTIONAL ACCESSOR Model 2981-4 Model 2771AM3	RESPONSE CABLE ASSEMBLY MOUNTING STUD, 10-32 Hex Key Wrench IES MOUNTING STUD, 10-32 IN-LINE CHARGE CONVI USE WITH CONSTANT C SOURCE	pF % % dB to 10-32 to M5 ERTOR FOR URRENT	 5000 Hz thru resonance NOTES Low-end response of the transducer is a function of its associated electronics. Short duration shock pulses, such as those generated by meta to-metal impacts, may excite transducer resonance and cause linearity errors. Send for TP290 for more details. Exposure to rapid temperature changes greater thatn 100°F (38°C) per minute may cause the device to produce spurious high frequency discharges for several minutes. Maintain high levels of precision and accuracy using Endevco's
MAXIMUM TRANSVERS CHARGE FREQUENCY ACCESSORIES Model 3090C-120 (10 ft) Model 2981-12 P/N EHM64 OPTIONAL ACCESSOR Model 2981-4 Model 29711AM3 Model 2950	RESPONSE CABLE ASSEMBLY MOUNTING STUD, 10-32 Hex Key Wrench IES MOUNTING STUD, 10-32 IN-LINE CHARGE CONVI USE WITH CONSTANT C SOURCE TRIAXIAL MOUNTING BL	pF % % dB to 10-32 to M5 ERTOR FOR EURRENT .OCK	 5000 Hz thru resonance NOTES Low-end response of the transducer is a function of its associated electronics. Short duration shock pulses, such as those generated by meta to-metal impacts, may excite transducer resonance and cause linearity errors. Send for TP290 for more details. Exposure to rapid temperature changes greater thatn 100°F (38°C) per minute may cause the device to produce spurious high frequency discharges for several minutes. Maintain high levels of precision and accuracy using Endevco's factory calibration services. Call Endevco's inside sales force a
MAXIMUM TRANSVERS CHARGE FREQUENCY ACCESSORIES Model 3090C-120 (10 ft) Model 2981-12 P/N EHM64 OPTIONAL ACCESSOR Model 2981-4 Model 2771AM3	RESPONSE CABLE ASSEMBLY MOUNTING STUD, 10-32 Hex Key Wrench IES MOUNTING STUD, 10-32 IN-LINE CHARGE CONVI USE WITH CONSTANT C SOURCE	pF % % dB to 10-32 to M5 ERTOR FOR EURRENT .OCK	 5000 Hz thru resonance NOTES 1. Low-end response of the transducer is a function of its associated electronics. 2. Short duration shock pulses, such as those generated by meta to-metal impacts, may excite transducer resonance and cause linearity errors. Send for TP290 for more details. 3. Exposure to rapid temperature changes greater thatn 100°F (38°C) per minute may cause the device to produce spurious high frequency discharges for several minutes. 4. Maintain high levels of precision and accuracy using Endevco's factory calibration services. Call Endevco's inside sales force a 800-982-6732 for recommended intervals, pricing and turn-
MAXIMUM TRANSVERS CHARGE FREQUENCY ACCESSORIES Model 3090C-120 (10 ft) Model 2981-12 P/N EHM64 OPTIONAL ACCESSOR Model 2981-4 Model 2971AM3 Model 2950 Model 2980B	RESPONSE CABLE ASSEMBLY MOUNTING STUD, 10-32 Hex Key Wrench IES MOUNTING STUD, 10-32 IN-LINE CHARGE CONVI USE WITH CONSTANT C SOURCE TRIAXIAL MOUNTING BL MOUNTING STUD, ISOL/	pF % % dB to 10-32 to M5 ERTOR FOR EURRENT .OCK	 5000 Hz thru resonance NOTES 1. Low-end response of the transducer is a function of its associated electronics. 2. Short duration shock pulses, such as those generated by meta to-metal impacts, may excite transducer resonance and cause linearity errors. Send for TP290 for more details. 3. Exposure to rapid temperature changes greater thatn 100°F (38°C) per minute may cause the device to produce spurious high frequency discharges for several minutes. 4. Maintain high levels of precision and accuracy using Endevco's factory calibration services. Call Endevco's inside sales force a 800-982-6732 for recommended intervals, pricing and turnaround time for these services as well as for quotations on our
MAXIMUM TRANSVERS CHARGE FREQUENCY ACCESSORIES Model 3090C-120 (10 ft) Model 2981-12 P/N EHM64 OPTIONAL ACCESSOR Model 2981-4 Model 2950 Model 2950 Model 2980B OPTIONAL CALIBRATIC	RESPONSE CABLE ASSEMBLY MOUNTING STUD, 10-32 Hex Key Wrench IES MOUNTING STUD, 10-32 IN-LINE CHARGE CONVI USE WITH CONSTANT C SOURCE TRIAXIAL MOUNTING BL MOUNTING STUD, ISOL/ DN	pF % % dB to 10-32 to M5 ERTOR FOR URRENT .OCK ATED	 5000 Hz thru resonance NOTES 1. Low-end response of the transducer is a function of its associated electronics. 2. Short duration shock pulses, such as those generated by meta to-metal impacts, may excite transducer resonance and cause linearity errors. Send for TP290 for more details. 3. Exposure to rapid temperature changes greater thatn 100°F (38°C) per minute may cause the device to produce spurious high frequency discharges for several minutes. 4. Maintain high levels of precision and accuracy using Endevco's factory calibration services. Call Endevco's inside sales force a 800-982-6732 for recommended intervals, pricing and turn-
MAXIMUM TRANSVERS CHARGE FREQUENCY ACCESSORIES Model 3090C-120 (10 ft) Model 2981-12 P/N EHM64 OPTIONAL ACCESSOR Model 2981-4 Model 2971AM3 Model 2950 Model 2980B	RESPONSE CABLE ASSEMBLY MOUNTING STUD, 10-32 Hex Key Wrench IES MOUNTING STUD, 10-32 IN-LINE CHARGE CONVI USE WITH CONSTANT C SOURCE TRIAXIAL MOUNTING BL MOUNTING STUD, ISOL/ ON CRYOGENIC TEMPERAT	pF % % dB to 10-32 to M5 ERTOR FOR URRENT .OCK ATED	 5000 Hz thru resonance NOTES 1. Low-end response of the transducer is a function of its associated electronics. 2. Short duration shock pulses, such as those generated by meta to-metal impacts, may excite transducer resonance and cause linearity errors. Send for TP290 for more details. 3. Exposure to rapid temperature changes greater thatn 100°F (38°C) per minute may cause the device to produce spurious high frequency discharges for several minutes. 4. Maintain high levels of precision and accuracy using Endevco's factory calibration services. Call Endevco's inside sales force a 800-982-6732 for recommended intervals, pricing and turnaround time for these services as well as for quotations on our
MAXIMUM TRANSVERS CHARGE FREQUENCY ACCESSORIES Model 3090C-120 (10 ft) Model 2981-12 P/N EHM64 OPTIONAL ACCESSOR Model 2981-4 Model 2950 Model 2950 Model 2980B OPTIONAL CALIBRATIC	RESPONSE CABLE ASSEMBLY MOUNTING STUD, 10-32 Hex Key Wrench IES MOUNTING STUD, 10-32 IN-LINE CHARGE CONVI USE WITH CONSTANT C SOURCE TRIAXIAL MOUNTING BL MOUNTING STUD, ISOL/ DN	pF % % dB to 10-32 to M5 ERTOR FOR URRENT .OCK ATED	 5000 Hz thru resonance NOTES 1. Low-end response of the transducer is a function of its associated electronics. 2. Short duration shock pulses, such as those generated by meta to-metal impacts, may excite transducer resonance and cause linearity errors. Send for TP290 for more details. 3. Exposure to rapid temperature changes greater thatn 100°F (38°C) per minute may cause the device to produce spurious high frequency discharges for several minutes. 4. Maintain high levels of precision and accuracy using Endevco's factory calibration services. Call Endevco's inside sales force a 800-982-6732 for recommended intervals, pricing and turnaround time for these services as well as for quotations on our
MAXIMUM TRANSVERS CHARGE FREQUENCY ACCESSORIES Model 3090C-120 (10 ft) Model 2981-12 P/N EHM64 OPTIONAL ACCESSOR Model 2981-4 Model 2981-4 Model 2950 Model 2950 Model 2980B OPTIONAL CALIBRATIC	RESPONSE CABLE ASSEMBLY MOUNTING STUD, 10-32 Hex Key Wrench IES MOUNTING STUD, 10-32 IN-LINE CHARGE CONVI USE WITH CONSTANT C SOURCE TRIAXIAL MOUNTING BL MOUNTING STUD, ISOL/ ON CRYOGENIC TEMPERAT	pF % % dB to 10-32 to M5 ERTOR FOR URRENT .OCK ATED	 5000 Hz thru resonance NOTES 1. Low-end response of the transducer is a function of its associated electronics. 2. Short duration shock pulses, such as those generated by meta to-metal impacts, may excite transducer resonance and cause linearity errors. Send for TP290 for more details. 3. Exposure to rapid temperature changes greater thatn 100°F (38°C) per minute may cause the device to produce spurious high frequency discharges for several minutes. 4. Maintain high levels of precision and accuracy using Endevco's factory calibration services. Call Endevco's inside sales force a 800-982-6732 for recommended intervals, pricing and turnaround time for these services as well as for quotations on our

Continued product improvement necessitates that Endevco reserve the right to modify these specifications without notice. Endevco maintains a program of constant surveillance over all products to ensure a high level of reliability. This program includes attention to reliability factors during product design, the support of stringent Quality Control requirements, and compulsory corrective action procedures. These measures, together with conservative specifications have made the name Endevco synonymous with reliability.

ENDEVCO CORPORATION, 30700 RANCHO VIEJO ROAD, SAN JUAN CAPISTRANO, CA 92675 USA (800) 982-6732 (949) 493-8181 fax (949) 661-7231 Email:applications@endevco.com www.endevco.com 1100